
FEWZ 3.1: A User’s Guide

Ryan Gavin, Ye Li, Frank Petriello, Seth Quackenbush

last update: September 5, 2012

Contents

Introduction 2
Getting Started . 2

FEWZ Argument Files 7
Input File . 7
Histogram File . 11
Parton Distribution Functions . 15

PDFs distributed with FEWZ . 15
Using the LHAPDF library . 15

FEWZ details 17
FEWZ makefile . 17
Vegas Files . 17
Structure of NNLO Calculation . 18
FEWZ executable . 18
Binary Operations with the Finish Script 20
How the Run and Finish Scripts Work . 21

1

Introduction

FEWZ is a Fortran based, numerical code that calculates electroweak (EW) gauge bo-
son production at hadron colliders through O(α2

s) in perturbative QCD. In the case
of Z production, FEWZ also provides numerical results up to O(α2) in electroweak
theory. The leptonic decays of the Z or W with full spin correlations are included, as
well as finite width effects, and, in the case of Z production, the Z/γ∗ interference.
The calculation is fully exclusive, allowing the user to investigate the production cross
sections as they wish by placing phase space constraints on the EW gauge boson, final
state leptons, jets or photon radiation. FEWZ also has the ability to create predefined
histograms simultaneously, where the parameters of the histograms can be set by the
user. All numerical results presented include PDF uncertainties.

Numerical integration within FEWZ is performed using Vegas, which is part of the
Cuba library. Cuba-3.0 is distributed with FEWZ. Basic system requirements include
Fortran and C++ compilers, Python, and the bash shell.

This guide describes the running of FEWZ. Articles discussing the physics of this code
can be found here: http://arxiv.org/abs/hep-ph/0609070, http://arxiv.org/abs/1011.3540,
http://arxiv.org/abs/1201.5896, and http://arxiv.org/abs/1208.5967.

Getting Started

FEWZ is distributed as a compressed tar file. To untar, use the command

> tar xzvf FEWZ_<version#>.tar.gz

or
> tar xzf FEWZ_<version#>.tar.gz (if not show details about running tar).

This will create the FEWZ directory. It should contain seven subdirectories and the
makefile. The following is a brief introduction to the directory structure.

Cuba-3.0: contains the Cuba library for numerical integration.

dat: contains all PDF files.

2

include: contains files to be included in various subroutines and functions found in
the src directory.

mainSrc: contains the main FEWZ source files.

src: directory containing the functions which construct the differential cross section,
perform histogramming, implement cuts, etc.

pdfSrc: directory containing PDF collaborations’ source code for calling their
PDFs.

bin: contains executables and input files for running FEWZ, and the scripts for start-
ing and analyzing those runs.

FEWZ takes advantage of the high-performance computing system Condor, if it is
present. By default the makefile attempts to generate the executable to run locally
as well as the one to run on Condor. To compile and create the FEWZ executables,
run

> make

make will first create the Cuba library (libcuba.a), and willl then continue to compile
FEWZ. Sometimes there are problems in creating the Cuba library depending on the
machine and compilers present. Such situations are documented on the Cuba website
(http://www.feynarts.de/cuba/). It is recommended that if remedies are not readily
found, that the user download the appropriate library file from the Cuba website, and
place it within the Cuba-3.0 directory. Once the Cuba library is present, running
make again will proceed to compile FEWZ.

After compiling, FEWZ will create four executables and place them in the bin directory.

fewzz - executable for Z production.

fewzw - executable for W production.

condor_fewzz - Condor executable for Z production.

condor_fewzw - Condor executable for W production.

Note: If Condor is not present on the machine where the compiling is performed,
an error will be output to screen. This occurs, however, after the executables to run
locally have been created. You can avoid this error message by typing

3

> make fewzz

or

> make fewzw

The makefile will be discussed in more detail in a later section.

Inside the bin directory, one can now run FEWZ. The specifics of a run can be found
and set within two types of files, the input file and the histogram file. There are
different input files for Z and W production. In the histogram file, the user can
specify the number of bins and the upper and lower bounds on the histogram. In this
scenario, the bins will be equally spaced. However, accompanying the histogram file
is another file which can be called to specify the exact boundaries of each bin to allow
for bins of varying size. These four files appear in the bin directory as input_z.txt,
input_w.txt, histograms.txt, and bins.txt by default. The user is free to rename
these files.

Note: Individual lines within the input and histogram files cannot be added or
deleted; they can only be altered. FEWZ expects a specifc structure in these files. This
is not the case for the bin size defining file.

The input files (input_z.txt, input_w.txt), the histogram input file (histograms.txt),
and the bin specifying file (bins.txt) will be discussed in more detail in a later sec-
tion.

Local Run

Running the local version of FEWZ is controlled by the shell script local run.sh. Its
use is detailed below.

> ./local_run.sh <boson> <run_dir> <usr_input_file> <usr_histo_file>

<output_file_extension> <pdf_location> <num_processors>

The various arguments have the following defintions.

<boson> is the mode that FEWZ is to be run in: z for Z production or w for W
production. By specifying Z or W production, the local_run.sh script knows
which executable, fewzz or fewzw respectively, to use.

<run_dir> is the name of the directory where all of the files for the job will be
placed. It is created when the shell script is run.

4

<usr_input_file> is the user-defined input file.

<usr_histo_file> is the user-defined histogram input file.

<output_file_extension> is the name of the output files.

<pdf_location> is the location of the dat directory, the directory containing the
PDF grids; if running from the bin directory, one can simply use .. for the
default setup.

<num_processors> is the number of processes to be used (default = 1), and should
be set to the number of processors wanted to work on the calculation.

Here is an example when running Z production from the bin directory:

> ./local_run.sh z my_run my_input.txt my_histograms.txt

my_results.dat .. 1

This will create a directory called my_run where the preliminary output files named
my_results.dat will be placed. FEWZ will look for the files my_input.txt and
my_histograms.txt in the bin directory.

The shell script finish.sh should be used to process the output files from FEWZ to pro-
duce a complete result from the run. The primary purpose of the finish.sh script is
to calculate and present errors due to PDFs, as well as normalize specific histograms.
This script has other uses, which will be described in a later section. finish.sh has
the following command line structure.

> ./finish.sh <run_dir> <order_prefix>.<output_file_extension>

<run_dir> and <output_file_extension> are the user defined run directory and
output file first declared in running local_run.sh, described above. <order_prefix>
is the perturbative order of the run: LO for leading order, NLO for next-to-leading or-
der, NNLO for next-to-next-to-leading order. This script will create one final output
file in the bin directory, titled <order_prefix>.<output_file_extension>.

In keeping with the example above, if running at next-to-next-to-leading order (NNLO)
in the bin directory, the finish.sh script would be used as

> ./finish.sh my_run NNLO.my_results.dat

This will create one final result file titled NNLO.my_results.dat.

5

Note: If running at orders LO or NLO, finish.sh can be used before the end of
a run, i.e. before Vegas has reached the desired precision or maximum number of
evaluations. As long as Vegas has performed one iteration and created output files,
finish.sh will produce an output file. This is not true for NNLO. Here, the user
must wait until all subdirectories contain output files before using finish.sh.

Note: We note that finish.sh is capable of performing binary operations on mul-
tiple runs. We detail these features in a later section.

Condor Run

The condor_run.sh script is designed to assist the user in setting up and running
FEWZ on the Condor batch system. This script is executed just as local_run.sh is,
with the exception of specifying the number of processors, i.e.

> ./condor_run.sh <boson> <run_dir> <usr_input_file> <usr_histo_file>

<output_file_extension> <pdf_location>

When processing Condor jobs, the finish.sh script can be used as it was described
for the local run. As a reminder, once there exists output files in each of the subdi-
rectories, finish.sh can be used. The jobs themselves might be far from finished,
but running this script can give the user an idea of the status of the overall NNLO
calculation.

Note: Due to the differences in user resources with respect to Condor, it is not
unexpected that the Condor related scripts might have problems working ”straight
out of the box.” Therefore, the Condor user might have to adjust the scripts to their
Condor environment.

6

FEWZ Argument Files

Here the user will find detailed descriptions of the FEWZ argument files, input_z.txt,
input_w.txt, and histograms.txt (as well as bins.txt).

It is important for the user to remember that the format of the argument files should
not be changed. The internal program expects the format as is, and may crash or
produce unexpected results if it receives something different.

Input File

The Z input file, input_z.txt, and the W input file, input_w.txt, only differ
slightly. The files have the same structure, and any differences will be explicitly
discussed.

Collider parameters

• collider CM energy in GeV

• renormalization and factorization scales (µR and µF , respectively).

– Set µR,F to 0 to use running scale (µR,F = Q the dilepton invariant mass).
It’s recommended to either turn off PDF error or use LHAPDF in this
case for efficiency.

– Set µR,F to negative number to rescale the running scale by the absolute
value of the given input, e.g. ”-2” means µR,F = 2Q

– List additional numbers after the renormalization/factorization scale in-
put will trigger two more parallel jobs for each sector for calculating scale
variation. The factor of scale variation is determined by this additional
number, e.g. ”91.2d0 2d0” means that 3 jobs with scales 91.2, 182.4 and
45.6 will be started.

• collider type

– Z production - pp (LHC) = 1, pp̄ (Tevatron) = 2.

– W production - pp (LHC) W− = 1, pp̄ (Tevatron) W− = 2,
pp (LHC) W+ = 3, pp̄ (Tevatron) W+ = 4.

7

EW parameters - input parameters for the SM

• Manual input is supported by both W production and Z production. Default
input files sets parameters using the Gµ scheme. The user has the freedom to
separately set overall couplings through the parameter α(MZ), weak mixing
angle sin2 θW , CKM matrix elements (W production only), and vector and
axial couplings of quarks and leptons as desired. Only QED portion of EW
correction will be used if choosing manual input in order to preserve gauge
invariance. Definitions used for gfV and gfA (as in Z input file) follow.

– gfV = 2(T f3)L − 4Qf sin2 θW

– gfA = −2(T f3)L

• ΓW→lν (W production only) uses an experimental value for reducing EW ef-
fects. Use a value given by αMW/ sin2 θW/12 instead if the user do not wish
to do so.

• Two hard-coded input schemes, α(MZ) scheme and Gµ scheme, are also avail-
able for Z production; the former relies on three parameters α(MZ), MZ , and
MW , and the latter depends solely on parameters Gµ, MZ , and MW .

• α(0) for Z production is used for photon induced process. Such process will
only contribute if the specified PDF set supports photon contribution.

• ml (mass of the lepton) for Z production is only used in the QED portion
of the NLO EW correction as a regulator of photon FSR singularity. A light
mass (ml �MZ), such as that of electron or muon, is required for consistency
with the rest of the code, except in the case when only NLO QED correction
is used (it happens if the user choose manual input and set QCD perturbative
order to 0).

Vegas parameters - parameters for numerical integration

• desired precision - It is recommended the user rely on the absolute accuracy.
One can get an estimate of the cross section by first running at LO (or NLO
when the lowest-order process begins at O(αs)) for a few iterations, then set
the desired absolute accuracy intelligently for the true run.

• calls per iteration - The initial number of samples. Due to the internal
workings of Vegas, it is recommended that evaluations be set in increments of
1000.

• increase calls per iteration - It is recommended that this be nonzero and
a multiple of 1000. Numerical convergence is usually improved by choosing a
number such that the increase is on the order of the initial sample.

• random number seed

Perturbative order settings

8

• LO = 0, NLO = 1, or NNLO = 2

• EW control (Z production only) - The control flag is read as a binary
number with each digit controls weak corection, ISRxFSR interference, ISR
and FSR contributions. Leave it 0 to have all EW corrections on. For example:

– EW control: 1 = (0001)2 means FSR off

– EW control: 2 = (0010)2 means ISR off

– EW control: 4 = (0100)2 means ISRxFSR off

– EW control: 7 = (0111)2 means ISRxFSR, ISR and FSR off (QED off)

– EW control: 8 = (1000)2 means Weak off and QED on

• Z or W pole focus - On =1, Off = 0. Pole focus on performs a variable
transformation to undo the Breit-Wigner resonance, smoothing the integrand
around the EW gauge boson mass pole. Off, the transformation is set to
smooth the integrand using the user defined Upper and Lower invariant
mass limits. This is more robust when sampling off the pole, but less efficient
at numerical convergence on the pole.

• turn photon off (Z production only) - Yes = 1, No = 0. If Yes, the photon
contribution is turned off, including the Z-photon interference. When off, only
QED portion of EW correction will be used for theoretical consistency.

Invariant mass cut - minimum and maximum invariant mass set in GeV.

Transverse mass cut - minimum and maximum transverse mass set in GeV.

Z or W boson cuts - rapidity, Y , and pT in GeV.

Leptonic cuts -

Z production

• pseudorapidity, η, and pT in GeV for both leptons.

• Minimum and maximum pT cuts on leptons when ordered by pT , i.e. hard
and soft leptons.

W production

• pseudorapidity, η, and pT in GeV for charged lepton.

• Minimum and maximum pT,miss (neutrino) in GeV.

• Minimum and maximum pT cuts on charged lepton and missing energy (neu-
trino) when ordered by pT , i.e. hard and soft leptons.

Jet cuts

• Jet algorithm - either kT , anti -kT , or cone algorithm can be used to merge
final state partons into jets; the algorithm cone size, ∆Rcone, is set by the user.
∆R is defined as ∆R =

√
∆η2 + ∆φ2.

9

• ∆R separation for cone algorithm - specific to the cone algorithm, this
parameter places an upper limit on the parton-parton separation, by requiring
that ∆Rparton,parton < ∆Rsep ·∆Rcone; default is ∆Rsep = 1.3.

• Minimum pT and Maximum eta for Observable Jet - To properly
define Jet observables, a minimum pTjet and maximum ηjet must be set. The
defaults are set to 20 GeV and 4.5.

• Min. and Max. # of Jets - allows the user to choose the desired number of
jets by setting the minimum and maximum number permitted. A final state
parton is only labelled a jet if it survives the minimum pT for an observable
jet (as set by the user). The check for number of jets is performed after the
jet merging algorithm. The default is set to min=0 and max=2, placing no
constraints on the number of jets present.

Photon cuts

• DeltaR for photon recomb. - choose the cone size ∆Rmin
lγ below which

the photon radiated and the lepton are recombined as a single particle. A
finite recombination cone size is required if QED correction is used and a zero
lepton mass is set.

• Minimum pT and Maximum eta for Observable Photon - similar to
jets. The defaults are set to 10 GeV and 2.5.

• Min. and Max. # of Photon - similar to jets. The default is set to min=0

and max=1, placing no constraints on the number of photon present.

Particle isolation - isolation measure in ∆R; lepton-jet isolation check performed
after jet merging.

Z production

• lepton – anti-lepton isolation

• lepton(anti-lepton) – jet isolation

W production

• charged lepton – jet isolation

Lepton – anti-lepton ∆φ cut - minimum and maximum ∆φlep,anti−lep separation,
where ∆φ is the angle, in the transverse plane, separating the leptons. The range
of ∆φlep,anti−lep is [0,π]. (For W production, this separation is between the charged
lepton and the missing energy, neutrino, i.e. ∆φlep,ET,miss

)

Z rapidity cutoff for CS frame - parameter which helps to further define (if
the user prefers) the quark direction (assuming a quark/antiquark initial state) in
pp colliders. The quark is taken to be moving in the direction of the resulting Z
rapidity, which correlates with the true direction. However, the user may choose to

10

employ a minimum Z rapidity cutoff to strengthen this correlation. Collins-Soper
frame related angles (cos θCS, φCS) and moments (A0..4) are defined with respect
to this quark direction, not the generator-level truth.

PDF set - user chosen PDF to implement in calculation: Note - see the following
Parton Distribution Functions section for complete list of sets and other details.

Histogram File

The histogram input file contains the set of predefined histograms, and their respective
parameters, that are filled during the running of FEWZ. The details of the file follow
below.

Name (DO NOT CHANGE) - is not an histogram input parameter, and does not set
the histogram title. This is simply a reference to inform the user which histogram
is being set.

Num of Bins - sets the number of bins in the histogram. The maximum number
of bins per histogram is 30 (see below for how to uplift this constraint).

Lower Bound - sets the lower edge of the histogram.

Upper Bound - sets the upper edge of the histogram.

Write Out Histogram - parameter setting which type and if the histogram should
be written to file. The normal histogram bins the differential cross section in the
normal way. The cumulative/reverse-cumulative histogram bins the differential
cross section, but adds each previous/later bin to the current one.

• 1 = Write out normal histogram.

• 2 = Write out cumulative histogram.

• 3 = Write out both normal and cumulative histogram.

• 4 = Write out reverse-cumulative histogram.

• 5 = Write out both normal and reverse-cumulative histogram.

• 0 = Do not write any type of histogram to file.

Definitions of individual histograms are given below.

1-2) Z rapidity and pT .

3) lepton pair invariant mass.

4-11) lepton and jet pseudorapidity and pT .

11

12-13) leading jet pseudorapidity and pT .

14) beam thrust, defined as

τB =
1

Q

∑
k

|~pk,T |e−|ηk−Y |

where Q and Y are the dilepton invariant mass and rapidity, and ~pk,T and ηk
refer to the transverse momentum and pseudorapidity of the k-th jet.

15-20) ∆Rij,separation, where i, j = l, l̄, j1, j2.

21) scalar sum of final state particle transverse momenta, HT =
∑
i pT , where i =

l, l̄, j1, j2.

22) transverse mass, defined as

MT =
√

2pT,lepET,miss(1− cos(∆φlep,miss)),

where pT,lep and ET,miss are the transverse momentum of the charged lepton and
the missing transverse energy, respectively. ∆φlep,miss is the angle separating
the charged lepton and missing energy in the transverse plane.

23) Collins-Soper moments; A0, A1, A2, A3, A4 as defined in the angular expansion

dσ
dQ2

T dY dΩCS
= 3

16π
dσu

dQ2
T dY

[(1 + cos2 θCS) + 1
2
A0(1−3 cos2 θCS) +A1 sin 2θCS cosφCS

+1
2
A2 sin2 θCS cos 2φCS + A3 sin θCS cosφCS + A4 cos θCS

where QT and Y are the transverse momentum and rapidity of the EW gauge
boson, ΩCS are the angles defined in the Collins-Soper frame, and dσu is the
unpolarized differential cross section.

24-25) φCS and cos θCS as defined in the Collins-Soper frame.

26) ∆φll - angular separation between leptons (lepton/missing energy for W pro-
duction), measured in the transverse plane.

Smoothing parameters: fine binning can lead to numerical instability if large
opposing weights generated in an evaluation end up in different bins. One option to
accelerate numerical convergence is to split the weight of points into two bins, with
equal weights in the limit of the boundary. Precisely,

w =
1

2
(1− (|x− xi|/y)α)α.

12

The bin fraction y is the fraction of the bin near the boundary, xi, that is subject to
smoothing, and α is the level of the smoothing; the weight is guaranteed to vanish or
approach 1/2 in the appropriate limit as xα. w is the fraction of the original weight
that gets smoothed to the adjacent bin.

Method of combining iterations: Histograms are produced through filtering for
each bin the sampling points generated by the Vegas MC integration program. The
grid for the MC integration is adapted to best estimate the total cross section instead
of each bin. Small bins tend to be unreliable at first, since some bins will get few
evaluations. Their estimation will improve as the grid adapts better.
This option enables us to choose the method to average iterations. Choose 0 to use
a more robust method which combines iterations using the relative error as a weight,
i.e., each iteration gets a weight (Ii/σi)

2, rather than the Vegas standard 1/σ2
i . The

Vegas method can cause problems if an iteration comes out too small, biasing the
error to be small as well. Choosing 1 will restore the default Vegas behavior, which
is useful as a cross-check, and will agree with the total cross section when the bins
are summed. Large differences are an indicator that the error is underestimated, and
one should increase the starting number of evaluations to reduce the likelihood of an
underestimated error in one iteration spoiling the rest. The default is one million.

Users can increase the maximum number of bins per histogram by modifying param-
eters BINPHIST, NUMBINSTOT in include/histos.f. If the user would like to add a
histogram to FEWZ, there are several files which need to be changed: include/histos.f,
src/histogram.F, bin/histograms.txt. Users change the code at their own
risk, and the authors are not responsible for any adverse effects.

Histograms with varying bin size

As previously mentioned, the user can create histograms with varying bin sizes by call-
ing a separate file, bins.txt, from the histogram input file, histograms.txt. Rather
than specifying the parameters Num of Bins, Lower Bound, and Upper Bound for a
particular histogram, the user can insert the name of the file containing the details
of the varying bin sizes. Please see the example below.

Consider the histogram for the EW gauge boson transverse momentum. It appears
as the following in the histogram input file, histograms.txt.

’1. Z pT ’ 20 0d0 660d0 1

Here, ’1. Z pT ’ is the histogram name, 20 is the number of bins
equally spaced between the lower bound of 0d0 and the upper bound of 660d0 (in
GeV), and 1 tells FEWZ to write to file a normal histogram. However, rather than

13

equally spaced bins, the user can choose to have bins of varying size. This is demon-
strated in the following line.

’1. Z pT ’ ’bins.txt’ 0d0 660d0 1

Rather than specify the number of bins, the user simply enters the name of the file,
’bins.txt’ (read by Fortran as a string), which details the size of each bin. Note:
the lower and upper bounds of 0d0 and 660d0, respectively, are no longer used, but
are now determined by ’bins.txt’. The following is an example of what bins.txt

might look like in this scenario.

0.0

50.0

100.0

200.0

400.0

700.0

There is no header for this file, only the edges of the bins, separated by new lines.

Each line in the file sets the boundary of a bin. This means that 0.0 is the lower
bound and 700.0 is the upper bound. This file specifies a total of 5 bins:

1) 0.0 – 50.0 GeV

2) 50.0 – 100.0 GeV

3) 100.0 – 200.0 GeV

4) 200.0 – 400.0 GeV

5) 400.0 – 700.0 GeV

If the user wishes to have more than one histogram with varying bins sizes, this is
possible. The histogram input file, histograms.txt, must be changed appropriately
for each histogram with varying bin size. If the desired bins of varying size differ
between two histograms, then the bins of varying size must be defined in separate
files, i.e. bins_1.txt and bins_2.txt.

14

Parton Distribution Functions

PDFs distributed with FEWZ

Below the user can find the complete list of parton distribution functions directly
available in FEWZ.

ABKM 09: NLO and NNLO sets, called in the input file as ABKM09NLO and
ABKM09NNLO, respectively.

CTEQ: 6L1, 6.5, 6.6, 10, 10W, 10NLO(2012) & 10NNLO(2012) sets, called in
the input file as CTEQ6L1, CTEQ65, CTEQ66, CTEQ10, CTEQ10W, CTEQ12NLO and
CTEQ12NNLO respectively. Grid files for the older sets CTEQ 6.5 and 6.6 are no
longer distributed with FEWZ, and must be downloaded into your PDF directory.

GJR 08: LO and NLO sets, called in the input file as GJR08LO and GJR08NLO,
respectively.

JR 09: NNLO set, called in the input file as JR09NNLO.

MRST 2004 QED: contains photon PDF contribution, called in the input file as
MRST2004QED.

MRST 2006: NNLO set, called in the input file as MRST2006NNLO.

MSTW 2008: LO, NLO, and NNLO sets, called in the input file as MSTW2008LO,
MSTW2008NLO, and MSTW2008NNLO, respectfully.

NNPDF 2.0: NLO set, called in the input file as NNPDF20. The grid files for
NNPDF 2.0 are no longer distributed with FEWZ.

NNPDF 2.1: LO, NLO, and NNLO sets, called in the input file as NNPDF21lo,
NNPDF21nlo, and NNPDF21nnlo, respectively.

References for each PDF set can be found in section 3.6 of the paper at
http://arxiv.org/abs/1011.3540 or in the references of the paper at
http://arxiv.org/abs/1201.5896.

Using the LHAPDF library

The user should have a compiled LHA PDF library before installing FEWZ. To
compile FEWZ with LHAPDF, the user needs to modify the makefile in FEWZ
main directory, changing
LHAPDF = off

15

to

LHAPDF = on

and specify the LHAPDF library directory using LHADIR variable. The complete list
of LHAPDF PDF sets can be found at LHAPDF official website (http://lhapdf.hepforge.org/pdfsets).
The user can call each PDF set through specify the grid file name (*.LHgrid) in the
input file.

When running with LHAPDF, the PDF directory used by the scripts is ignored.
Multisets are automatically detected, but only one may be run at once in this fashion.
The scripts will work as normal, but presently are incapable of combining different
LHAPDF multisets, which would be required for αS errors in MSTW, for example.
All sets but NNPDF are presently assumed to have asymmetric error eigenvectors, in
alternating order.

16

FEWZ details

This section is dedicated to describing some parts of the code that deserve more
attention to better understand the workings of FEWZ.

FEWZ makefile

There are several targets of the makefile. They are listed below.

make: configures and compiles the Cuba library if not present, then compiles the
local-run version of the FEWZ executable, and then compiles a Condor-run ver-
sion of the executable.

make cuba: configures and compiles the Cuba library file in the directory Cuba-3.0.

make fewzz: compiles the Cuba library if not present, and then compiles the local-
run version of the FEWZ executable for Z production.

make fewzw: compiles the Cuba library if not present, and then compiles the local-
run version of the FEWZ executable for W production.

make condor_fewzz: compiles the Cuba library if not present, and the compiles
condor-run version of the FEWZ executable for Z production.

make condor_fewzw: compiles the Cuba library if not present, and the compiles
condor-run version of the FEWZ executable for W production.

make clean: cleans up all the compiled object files.

make distclean: cleans up all the compiled object files as well as executables.

Vegas Files

FEWZ takes advantage of several Vegas features. After every iteration of the integra-
tion, Vegas can write a machine readable file that contains all of the information,
including the grid. FEWZ takes advantage of this. If, for example, FEWZ exits early

17

(before reaching the desired precision or maximum number of evaluations), due to
user intervention or some extenuating circumstance, then the code can be restarted,
without any loss in the calculation. Vegas will pick up again where it had left off.
This machine-only readable file is named vegas last iter.

This file is also useful even when a job has finished correctly. Consider a situation
where a run of the code exits upon achieving the user defined precision. After running
the finish.sh script, and examining the final output file, the user decides to run the
code to a higher precision. By having the vegas_last_iter file, the user doesn’t
need to start the run from scratch, but simply needs to restart the job by rerunning
the local_run.sh (or condor_run.sh) script with the same arguments. The only
needed change is to the Vegas precision setting in the input file. Be aware that with
Condor, restarting may cause the calculation to be started from scratch when a sector
is submitted to a machine with a different architecture than previously.

FEWZ also writes a similar file named entries. The function of the entries file is to
store the histogram information and PDF errors. This file is utilized exactly as is
vegas_last_iter.

Structure of NNLO Calculation

In order to improve the performance of FEWZ at NNLO, the differential cross section
has been split into pieces called sectors: 127 sectors for Z production and 154 sectors
for W production. Each sector is evaluated separately in Vegas, and then merged
together when all 127(154) have been evaluated. When running at NNLO, there are
127(154) subdirectories, each containing a copy of the original input file and the re-
sulting output files for that particular sector. This substructure occurs when running
locally and with Condor.

Note: The advanced user is advised to pay particular attention to the labeling of the
sectors, which can run from 0-126 or 1-127 for Z production and 0-153 or 1-154 for
W production. Zero indexing is required for Condor compatibility. However, the user
may find a labeling of 1-127(1-154) for various file names. There is a simple mapping
from 0-126(0-153) to 1-127(1-154).

FEWZ executable

The local-run version of the FEWZ executable can be run outside of the local_run.sh

script. From the command line, the executable is called as shown below, using Z
production as the example.

18

> ./fewzz -i <usr_input_file> -h <usr_histo_file> -p <pdf_location>

-o <output_suffix> -l <output_location> -s <which_sector>

The command line arguments have the following definitions.

<usr_input_file> is the user-defined input file.

<usr_histo_file> is the user-defined histogram input file.

<pdf_location> is the location of the dat directory; if running from the bin direc-
tory, one can simply use ..

<output_suffix> is the name appended for the output files; use . for current di-
rectory

<output_location> is the location of the output file will be generated at

<which_sector> specifies which sector to run and defaults to 0; the sector number
specified here is zero-indexed in order to be compatible with Condor.

-i, -h, -p, -o, -l and -s must be included when calling fewzz and its arguments.

The finish.sh script can not be used if the local-run version of the FEWZ executable
is run outside the local_run.sh script. finish.sh expects the directory structure
that local_run.sh creates. This is true regardless of the order of perturbation the-
ory that the code was run at. Manipulating the raw output files that are created
when running in this fashion requires a more detailed understanding of the scripts
contained in the bin/scripts directory. Therefore, it is advised that only advanced
users of FEWZ attempt any running from the command line.

A second executable, condor_fewzz or condor_fewzw, for Condor system has exactly
the same usage. And it is compiled separately to be used by the condor_run.sh

script. Advanced users can choose to write their own Condor submission file and
condor_fewz should be the executable to use.

Each executable produces two raw output files for a given sector: a file containing
the central value for the cross section and for all histogram bins, and another file
containing the same results for all PDF eigenvectors. At this stage the Collins-Soper
moments and angles are not yet properly normalized, and PDF errors have not yet
been calculated. These operations are performed by the finish.sh script as detailed
in a later section.

19

Binary Operations with the Finish Script

finish.sh can perform more complicated tasks for multiple runs:

> ./finish.sh <run_dir1> <order_prefix>.<output_file1_extension> <operator>

<run_dir2> <order_prefix>.<output_file2_extension> <new_output_file>

where <operator> could be

+ addition

- subtraction

* multiplication

/ ratio

. average

A asymmetry

where the asymmetry operator is defined as

Aab =
σa − σb
σa + σb

.

The average operator will take the weighted average of two runs, such that the nu-
merical error is minimized. This is useful if restarting a calculation is cumbersome or
not an option due to differing available architectures.
<new_output_file> is the desired new output file name. It takes two independent
running directories and performs the specified operation between corresponding inte-
gration results (total cross section and histogram bin weight). The two different runs
should have the same histogram configuration for the operation to be performed.
An example would be to obtain the difference between NNLO results and LO re-
sults for Z production, assuming that we use condor_run.sh for the NNLO run and
local_run.sh for the LO run:

> ./local_run.sh z my_run_LO my_input_LO.txt

my_histograms.txt my_results.dat .. 1

> ./condor_run.sh z my_run_NNLO my_input_NNLO.txt

my_histograms.txt my_results.dat ..

When output files exist in all subdirectories for the NNLO run, the following com-
mand can be used:

20

> ./finish.sh my_run_NNLO NNLO.my_results.dat

- my_run_LO LO.my_results.dat NNLOminusLO_results.dat

The file NNLOminusLO_results.dat would contain the data showing the differences
of total cross section and histograms of each bin.

How the Run and Finish Scripts Work

Though the FEWZ executable can perform single-sector runs once compiled success-
fully, it is recommended to use local_run.sh to run FEWZ locally for LO and NLO
runs due to the subdirectory structure it creates. For NNLO runs, the structure con-
sists of 127(154) subdirectories inside the run directory specified by <run_dir>, and
127(154) jobs, corresponding to 127(154) NNLO integration sectors, can be started
independently. For consistency, the similar structure is created for LO and NLO runs
as well, but with only one subdirectory.

Once local_run.sh is invoked with appropriate arguments, the shell script calls
scripts/create_parallel.py to set up the subdirectory structure. Given n pro-
cessors specified by <num_processors> in the argument list, local_run.sh starts n
sectors simultaneously in the beginning and waits to start another one when one of
the started sectors finishes. It is useful only for NNLO runs because LO and NLO runs
contain just one sector. We will assume an NNLO calculation below if not specified
otherwise. By default, local_run.sh runs until all sectors finish numerical evalua-
tion. However, there are extra arguments that user can choose to evaluate only the
desired sectors:

> ./local_run.sh <boson> <run_dir> <usr_input_file> <usr_histo_file>

<output_file_extension> <pdf_location> <num_processors>

<init_sector> <last_sector> <sector_step>

or

> ./local_run.sh <boson> <run_dir> <usr_input_file> <usr_histo_file>

<output_file_extension> <pdf_location> <num_processors>

<which_sector>

where <init_sector>, <last_sector> and <which_sector> runs from 1-127(1-154),
and <sector_step> can be any integer. <init_sector>, <last_sector> and <sector_step>

specifies the sector group that the user wants to loop through, i.e.:

for sector from <init_sector> to <last_sector> by <sector_step>

21

do

. . .

end do

and only relevant subdirectories are created. <sector_step> can be set to a negative
value so that the sector loop goes backward in sector number. Take for example Z
production, the user can start two local runs on different machines, one loops from 1
to 100

> ./local_run.sh ... 1 100 1

while the other loops from 100 to 1

> ./local_run.sh ... 100 1 -1

Note that the first one can be simply started without the extra arguments using

> ./local_run.sh ...

since local_run.sh by default loops through all sectors.

The second usage mentioned above will start only one sector as given by <which_sector>

and is equivalent to the first usage by setting <init_sector> = <last_sector> =
<which_sector> and <sector_step> = 1.

condor_run.sh is designed to start FEWZ jobs on the Condor system where all 127/154
sectors can be submitted to run simultaneously on a computing farm. It calls
scripts/create_parallel.py to create the subdirectory structure, and
scripts/create_condor_job.py to write the Condor submission file. Output files
will be generated and updated in each subdirectory. finish.sh can be used to view
a preliminary result whenever output files exist in all subdirectories. If some sector
terminates abnormally, the following can be used to submit the job for the corrupted
sector individually.

./condor_run.sh <boson> <run_dir> <usr_input_file> <usr_histo_file>

<output_file_extension> <pdf_location> <which_sector>

condor_run.sh will try to create the subdirectory structure and original submission
file again if not present, and modify the original submission file for the bad sector.
The new submission file will be used to submit the single sector job.

22

Due to the same subdirectory structure, finish.sh is invoked in the same manner
for both cases. We recommend local_run.sh or condor_run.sh even for LO and
NLO runs, because finish.sh can recognize the unique subdirectory structure for
each type of run, and is able to compile the results more efficiently by calling various
python scripts. It determines whether to merge sectors by reading the order prefix
of the output file, for which scripts/merge_parallel.py is called to generate two
raw merged output files in the run directory:

<order_prefix>.<output_file_extension> : preliminary merged result for cen-
tral value;

<order_prefix>.pdf.<output_file_extension> : preliminary merged result con-
taining all PDF information necessary to calculate PDF errors.

<order_prefix>.p/m_<output_file_extension> : preliminary merged files con-
taining the results with scale variations (p for scale varied up; m for scale varied
down).

If the user simply wants to process a single run, finish.sh will copy the raw output
files to the current directory, i.e. the bin directory. If the user wants to perform a bi-
nary operation involving two runs, the sectors of both runs will be merged if required
by the perturbative order. finish.sh will then call scripts/combine.py, which pro-
duces combined central-value and PDF-error output files in the current directory. At
last, scripts/get_momentA.py is used to normalize the Collin-Soper angles and mo-
ments for both files. Scale variation are determined by calling scripts/do_scales.py.
PDF errors are calculated by calling scripts/do_pdf.py. The extra PDF output file
and scale variation files will be deleted, leaving only one final output file. The two raw
merged files in the case of NNLO runs will be left in the run directory for bookkeeping
purposes only.

Note: All shell scripts provide a usage message if called with fewer than the specified
number of arguments.

23

	Introduction
	Getting Started

	FEWZ Argument Files
	Input File
	Histogram File
	Parton Distribution Functions
	PDFs distributed with FEWZ
	Using the LHAPDF library

	FEWZ details
	FEWZ makefile
	Vegas Files
	Structure of NNLO Calculation
	FEWZ executable
	Binary Operations with the Finish Script
	How the Run and Finish Scripts Work

